CS 764 — Computational Complexity — Fall '07 TuTh 10:00–11:20, DC 3314

Issues addressed

Why are some problems harder than others? Hard-but-solvable problems do exist. Different constraints may use the same methods.

Does randomness help computation? Good advice is at least as useful. Perhaps pseudo-randomness can get the job done.

What if we relax the requirements? Sometimes approximation is hard. Some problems might not have good heuristics.

What if two computations interact?

Untrustworthy information sources can be useful. On can reveal exactly one bit of information.

Are NP-complete problems actually hard? Algorithms can be very sneaky!

Material covered

Structural complexity

Complexity classes and their relationships. Properties of complete sets. Unexpected collapses of complexity classes.

Parameterized complexity

Problems that are easy for small parameter values. Completeness and the "W hierarchy."

Lower bound proofs Kolmogorov complexity.

Pebbling games. Bounds on circuit size.

Background expected

Formal machines with time and space bounds Complexity classes (*P*, *NP*,...); Completeness

Required work

Assignments and Term project (written report and presentation).